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Abstract 

In support of three-dimensional modeling of soils in the near surface, a 
method was developed to define soil material types quantitatively using 
statistical comparisons of properties expected to impact sensor perfor-
mance. To maintain technical continuity with other soils research and 
ensure relevance to soils engineering, many of the parameters chosen for 
statistical comparisons included conventional properties familiar to 
geotechnical researchers. Other, more sensor-specific soil properties, such 
as effective saturation and thermal conductivity, were used to allow for 
direct correlation between classified soil materials and sensor response. 
Initial trials of the method evaluated datasets from four sites in the U.S. and 
Asia. Early results showed that the number of statistically distinguishable 
materials tends to mimic the number of soil horizons sampled for a given 
dataset. Results also revealed a critical need for further research on the 
interactions of various soil properties and states between and among each 
other to determine the combinations that have the strongest influence on 
sensor response patterns. This protocol for delineating near-surface soil 
materials advances earlier techniques and improves the state-of-knowledge 
of modeling geologic features in three dimensions for sensor simulation. 

 

DISCLAIMER: The contents of this report are not to be used for advertising, publication, or promotional purposes. 
Citation of trade names does not constitute an official endorsement or approval of the use of such commercial products. 
All product names and trademarks cited are the property of their respective owners. The findings of this report are not to 
be construed as an official Department of the Army position unless so designated by other authorized documents. 
 
DESTROY THIS REPORT WHEN NO LONGER NEEDED. DO NOT RETURN IT TO THE ORIGINATOR. 
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Unit Conversion Factors 

Multiply By To Obtain 

feet 0.3048 meters 

inches 0.0254 meters 

miles (U.S. statute) 1,609.347 meters 

pounds (mass) 0.45359237 kilograms 

pounds (mass) per cubic foot 16.01846 kilograms per cubic meter 

pounds (mass) per cubic inch 2.757990 E+04 kilograms per cubic meter 

square feet 0.09290304 square meters 

square yards 0.8361274 square meters 

tons (force) per square foot 95.76052 kilopascals 

yards 0.9144 meters 
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1 Background 

The development of a three-dimensional (3-D) geologic model is a multi-
step process. One of the first steps is to define a representation of the 
geologic framework that controls the spatial distribution of soil properties in 
the model (Turner et al. 2007). The distribution and variability of soil 
properties in the shallow subsurface are controlled by the geologic 
architecture, which is the size, shape, and arrangement of soil features 
attributable to the geologic origin of soils in an area (Wakeley et al. 2010). 
The geologic architecture – and therefore the distribution of soil properties 
– results from regional and local geologic processes that deposited or 
formed the soil (Weissmann 1999) and subsequent human activity and 
natural chemical and physical processes that later modified it. The research 
described in this report was executed to develop a comprehensive and 
adaptable method for delineating soil materials at multiple scales based 
upon soil properties in the shallow subsurface.  

The purpose of the Geo-environmental Tactical Simulation (GEOTACS) 
program is to develop comprehensive, high-fidelity models that will predict 
and improve performance of sensor systems for surface and near-surface 
target detection in complex geo-environmental settings (Horner 2009; 
Fairley et al. 2010). The intent of GEOTACS research is to improve the 
realism of representations of the geo-environment. Rather than developing 
a better sensor to find a needle (the target) in a haystack (the geo-
environment), the GEOTACS program focuses on better characterization 
and representation of the haystack to improve automated “needle”-
recognition algorithms with fewer false alarms. Realistic 3-D geologic 
models must be included in the comprehensive GEOTACS models. This 
research is a step toward improving the realism of soil property 
distributions in 3-D geologic models. 



ERDC/GSL TR-12-9 2 

 

2 Soil Modeling for the ERDC 
Computational Testbed 

2.1 Geo-environmental modeling for sensor simulation 

Since 2005, ERDC researchers have been developing a computational 
testbed to explore near-surface process interaction at a fine scale to better 
understand the phenomena behind the interaction of sensors and soils 
(Eslinger et al. 2007; Fairley et al. 2010; Howington et al. 2010; Peters et al. 
2007). To support the computational testbed, the GEOTACS subsurface 
realizations team developed 3-D geologic conceptual models of the near-
surface using the Department of Defense Groundwater Modeling System 
(GMS) platform (Wakeley et al. 2010, 2011). Various types of soil data from 
several areas of interest (AOI) were assembled in GMS to construct 3-D 
geologic models that were consistent with geologic architecture. A transi-
tion-probability geostatistics package – TPROGS for GMS – was used to 
generate multiple static models of soil materials’ distributions at depth. 
Each soil material had a unique set of properties that was determined using 
statistical analyses of soil properties (see Chapters 3 and 4). 

Each static model, or realization, is a possible representation of reality. 
Using spatial constraints provided by the modeler and statistical parameters 
in the software module, TPROGS for GMS generates the geologic 
architecture (i.e., distribution of soil materials) in each realization. Unlike 
many other geologic modeling methods, TPROGS does not directly emulate 
the input borehole data. Instead, it distributes the soil materials according 
to the probability that any two or more materials may be found juxtaposed, 
and where they occur most frequently within the model grid. The borehole 
data are used only to calculate the distribution values, not to dictate where 
the materials will be placed at the location of the borehole. This facet of 
TPROGS is what enables the production of multiple realizations that have 
the same statistical probability of existing, given the available data. 

In the voids between the specified locations, the soil materials may be 
distributed differently in each realization, but the statistical probability that 
any one material exists in a given place will always remain the same. That is, 
TPROGS fills the voids in each realization based on the probabilities of 
materials being juxtaposed to one another, given the input data. This results 
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in a series of physically different but statistically identical individual static 
models (or realizations). 

The limitations of the data are such that having a model that precisely 
replicates the distribution defined at the location of each borehole does not 
provide any advantages in this application. Many of the boreholes are 
defined by expert judgment and, thus, do not necessarily reflect the true 
material distribution at that point. Several of the boreholes are from 
recreations of real data, but these are only a small part of the total number 
of boreholes. 

The boreholes are also sparsely distributed throughout the model. Even if 
every borehole in the model were "real" at the scale of interest, a great deal 
of interpretation would be required to fill in the void. Despite not being an 
exact reproduction of the borehole data, a TPROGS model grid captures the 
spatial tendencies of the data-- such as pinching, abrupt material transi-
tions, and space-variant volume changes-- that are the most important 
considerations in modeling geologic architectures of soil materials. Because 
they are equally likely to be an accurate representation of reality, any of the 
multiple realizations, then, can be used as the subsurface component of a 
full geo-environmental model.  

The 3-D geologic models created in this manner thus provide a framework 
for distributing material properties in the subsurface and in so doing 
directly support production of more complex testbed models. Howington 
et al. (2010) explain the ERDC computational testbed, of which 3-D 
geologic models of near-surface soils are a critical component. 

2.2 The need to define material types for 3-D soil modeling 

Soils properties affect sensor response, and sensors used for target 
recognition rely on differences in properties among materials and between 
a given material and an encapsulated target to detect threats (Fairley et al. 
2010; Howington et al. 2010; Howington et al. 2011). Thus, to model the 
response of a sensor to various subsurface conditions, it is necessary to 
have a scientifically sound and reproducible method to delineate multiple 
subsurface material types. The method must be applicable to a variety of 
conditions and sensors at many different scales. Moreover, the properties 
considered in the development of the method, or protocol, must be 
relevant to the sensors being used. Some commonly measured soil 
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properties have little bearing on the response of sensor modalities, while 
others have a significant impact. 

Soil properties used in the Unified Soil Classification System (USCS) 
(U.S. Army Engineer Waterways Experiment Station 1960) are among the 
most commonly measured and reported for engineering purposes. The soil 
classes of the USCS are inadequate for defining soil material types in a way 
that is meaningful for sensor systems. To understand why the USCS is 
inadequate, consider that two soil samples from one site may meet the 
grain-size requirements of a single USCS class but at the same time have 
very different densities, moisture contents, and saturated permeabilities. 
Because moisture content, density, and saturated permeability are known to 
affect sensor response (Andraski 1996; Boadu 2000; Curtis 2001; Koh and 
Wakeley 2010), the two soils that would be considered a single material in 
the USCS may impact a given sensor modality in very different ways. Thus, 
the method used to define soils materials for GEOTACS modeling must be 
based on properties that are expected to impact sensor response rather than 
on soil classes alone.  

Other commonly used soil classification systems, such as the U.S. Depart-
ment of Agriculture (USDA) Soil Taxonomy (Soil Survey Staff 2006) and the 
American Association of State Highway and Transportation Officials 
(AASHTO) system (2010) are also insufficient for sensor-response 
modeling. Similar to the USCS, these methods use a set of soil properties 
useful in a limited number of applications. Despite their limited purview, 
however, they do indicate an important aspect of soil classification: specific 
applications require specific classification systems. Thus, when the applica-
tion is 3-D modeling of the subsurface for sensor response simulations, an 
appropriate classification system must be developed and used. 

In early GEOTACS models, subsurface materials were distinguished from 
each other by considering a suite of soil properties expected or known to 
affect sensor response. Both descriptive and quantitative data were 
considered. Table 1 contains a list of the data types used in early subsurface 
models. 

Early determinations of soil materials at the GEOTACS modeling sites 
were made using a combination of expert geologic judgment and simple 
statistical analyses of the properties in Table 1 (Wakeley et al. 2011). The 
aim of this effort was to create a 3-D geologic model that was an accurate  
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Table 1. Types of data used in early subsurface modeling efforts for the GEOTACS program. 

Quantitative data types Qualitative data types 

Mineral composition Geomorphic setting from imagery 

Percentages of fine particles (clay and silt), 
sand, and gravel 

Geologic setting and descriptions of soil types 
from field notes  

Dry bulk density USCS classification and soil texture 

Plasticity index  

Gravimetric and volumetric water content  

Saturated hydraulic conductivity  

Cation exchange capacity  

representation of what a sensor might actually “see” in the subsurface, 
rather than to create a model that showed only geologic features. This 
method was successful but revealed a need to develop more robust 
quantitative tools for defining material types. Chapters 3 and 4 of this 
report describe in detail the new, more robust method that was developed. 

2.3 TPROGS for GMS and subsurface complexity 

TPROGS for GMS was used to generate multiple static models of the 
distribution of material types at depth. GMS was chosen as the platform 
because it was successfully used to generate complex 3-D conceptual 
geologic models in previous work (Talbot et al. 2003; Wakeley et al. 2007). 
The value of TPROGS is in its assumptions. Because it uses advanced 
statistical methods to “fill in the gaps” in geologic data, it is an excellent 
choice for modeling geologic features where data are sparse. 

The current version of TPROGS for GMS is limited to producing realizations 
that contain no more than five material types. These five materials are 
essentially five types of soil, each with a characteristic set of properties. Five 
materials are sufficient in some situations but may be insufficient in others, 
depending on the scale of interest and the geological fidelity required. In 
other words, areas with complex geology may require more than five 
materials to represent accurately the variability in soil properties that can be 
detected by a given sensor. Likewise, areas with simple geology may require 
fewer than five material types if the model is developed at a relatively coarse 
scale. 

Soil variability from one geo-environment to another poses an additional 
problem: the complexities of material distribution can confound traditional 
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“layer-cake” 3-D geologic models. In real environments, distinct soil 
materials can be laterally and vertically intermittent. Layer pinching 
gradational changes at one location, abrupt contacts at another, multiple 
overlapping units of the same material, and other unique features of real 
environments can preclude the use of ”layer-cake” models. TPROGS is one 
of the best solutions to this problem developed to date. Nonetheless, a 
limited number of material types will always require a robust method to 
determine the criteria used to distinguish one soil material from another. 
Without such a method, an accurate model of the near-surface relevant to 
sensor response can never be developed. The combination of the soil 
material definition protocol described hereafter and the relatively simple 
geologic conditions of the areas of interest allowed more realistic and 
accurate models to be produced using TPROGS for GMS.  
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3 Advancing the Method for Defining Soil 
Materials 

3.1 Early work and mounting challenges 

While early work at developing a protocol for defining soil materials 
(described in Chapter 2) was sufficient for the need at the time, additional 
work was required to meet advancing GEOTACS program goals. Recent 
work focused on the development of a protocol that is both more 
quantitative and more adaptable. The new protocol described in the 
remainder of this report is the first iteration of a tool that can be used to 
delineate soil materials at multiple scales, in multiple geologic settings, 
and with wide-ranging applicability to simulations of sensor response. 
This tool is the first of its kind and provides a starting point for future 
sensor simulations, soil-property modeling, and 3-D geologic modeling. 

Similar to previous work, the protocol provides decision points at which 
expert judgment is critical to the modeling effort. More robust quantitative 
methods in the new protocol make it more versatile, more reproducible, 
and simpler to implement. Ultimately, the protocol detailed in this report 
will improve the accuracy and realism of 3-D models of soil properties at 
the scale required for the GEOTACS Program – about 2 to 4 cm (Eslinger 
et al. 2007). 

The greatest challenge to advancing the protocol is one of numbers. The 
various properties known to affect sensor response must be measured, 
compared, and analyzed, such that the difference between soil materials is 
clearly defined in a reproducible manner. This challenge is complicated by 
correlations between the properties (e.g., density and water content), their 
differing effects on sensor systems, and their various scales and units of 
measurement. Another great challenge is the lack of precedent: no soil-
classification system addresses the specific needs of sensor response 
simulations. Because of these challenges, the subsurface realizations team 
had to develop a novel approach to the problem within a limited research 
scope.  

In its current form, the protocol for defining material types is tailored to the 
requirements of the GEOTACS research program. Yet part of the premise of 
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this method is that it provides a tactical framework for approaching 
definition for materials for 3-D geologic models. That is, rather than 
requiring a certain set of soil properties and/or environments to be 
applicable, it can be adapted to any set of material properties for almost any 
purpose. The protocol could, for example, be used to define materials by 
their effects on blast response or by their effects on geophysical sensors 
used to detect subsurface anomalies. The protocol allows the user to define 
materials that are consistent with the geologic architecture of a site by 
analyzing properties known to impact the response of the sensor or the 
system of interest. 

The protocol also includes more conventional engineering properties to 
maintain continuity for users who are familiar with the USCS soil 
classification system. With respect to the GEOTACS Program, the results 
of material definitions using the protocol are used in the context of 
imagery, geologic data, and field descriptions to develop the geologic 
architecture of the site being modeled. The protocol is a foundational 
component of the mission of the subsurface realizations team. 

3.2 Soil-property data 

To produce most 3-D geologic models, high-density datasets are input into 
a modeling program, and the program “connects the dots.” This method 
works well where data are widely available or easily obtainable but 
presents a problem in regions that are difficult to access or otherwise data 
limited. Detailed data collection is impractical for the GEOTACS Program 
because of the many logistical limitations in active military operations 
zones and locations under military scrutiny. Thus, the TPROGS for GMS 
makes possible the required modeling component by using sparse proxy 
data analyzed using the protocol presented herein to assign material types 
to the soils and distribute those materials “virtually” through the 
subsurface using TPROGS for GMS.  

The data available for this study came from 20 sites in arid environments 
in the U.S., Iraq, and Afghanistan. Data were derived from soil samples 
collected by ERDC research teams using a standardized sampling method 
(Wakeley et al. 2009). At each site, undisturbed soil samples were 
collected at standard depth intervals from trenches up to 2 m deep using 
3-in.-diameter hollow cylinders. The cylinders were capped and sealed in 
the field to preserve in-situ density, particle geometry, and moisture 
content. Depending on trench depth and local geology, the depth intervals 
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between soil samples varied from 10 to 20 cm. By using a shovel or a pick, 
the research team collected additional soil samples at locations within and 
outside the trench, as needed, to support interpretations of local geologic 
architecture. 

Physical, mechanical, chemical, and electrical properties of each soil sample 
were measured either by the ERDC laboratories in Vicksburg, MS, or by the 
laboratories of Daniel B. Stephens and Associates in Albuquerque, NM, or 
by both. Soil-properties data were organized by sample site and depth and 
are continuously maintained in a database at the ERDC. Not every desired 
soil property could be measured at every site and depth range. In some 
cases, field conditions were not ideal for sampling, and testable samples 
were not obtained. As with any large sampling program, other logistical and 
processing issues led to gaps in the soil properties datasets. These gaps 
made it even more imperative that the protocol and distribution of resulting 
materials work well with limited datasets. 

3.3 Development of a statistical approach 

The development of a new soil classification method was motivated by two 
factors. First, it is essential to be able to compare soil samples from multiple 
sites and depth ranges, considering that a multitude of soil properties 
influence sensor response. Furthermore, the volume of soils data available – 
albeit not concentrated in any one location – precluded the use of simple 
qualitative methods. A robust mathematical approach that could handle the 
types and diversity of available data was needed. Second, it was imperative 
that the individual soil materials identified for use in GMS modeling efforts 
had consistent properties between and among all models produced. 

In earlier 3-D modeling work, the soil materials were defined by combining 
expert geologic architecture interpretations with visual comparisons of soil 
property data and some simple statistical averaging. This approach was 
adequate to produce an initial set of 3-D model realizations but was not 
sufficiently reproducible. It relied heavily on expert judgment. Although 
expert judgment is an important aspect of determining the constraints of 
any geologic model, it is ultimately insufficient for true pattern recognition 
and can be inconsistent between individual experts. 

The protocol detailed here is the next step toward developing a system of 
combined quantitative and qualitative tools that are specifically designed 
to address the known relationships between certain soil properties and 
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sensor responses. It is based on a reproducible set of processes and is less 
open for interpretation than previous methods. 

3.4 Outline of steps to develop the new protocol 

The first step in developing our approach was to determine the set of soil 
properties that would be used in the protocol. Multiple soil properties – 
also called “parameters” in this method – had already been measured in 
both the field and the laboratory. This set was, thus, the first constraint on 
our choices: we limited the parameters to those in the dataset. This was 
reasonable, since each parameter was measured specifically because it was 
known to impact sensor response (Wakeley et al. 2009). That is, we could 
be reasonably sure that each of the soil properties in the dataset was 
important to our mission. The set of parameters chosen for this protocol is 
described in Chapter 4. 

The next and perhaps most challenging part of our mission was to find a 
statistical method that could be used to compare multiple properties from 
multiple sites and depth ranges. This challenge was complicated by the 
fact that soil properties vary at many scales and in many dimensions 
(vertically and laterally), both within one material and between materials 
and at the very small and very large scales.  

A further complication was that most soil properties are measured in 
unique units, and the range of possible values for each property can vary 
an order of magnitude or more. Before we could address our goal of 
determining the best statistical method to compare the individual data 
points (i.e., a soil property at a certain depth and location), we first had to 
determine how to standardize the data so that soil properties could be 
compared with one another. This challenge required us to develop an 
understanding of the data we had using descriptive statistics and to 
determine the best method to correct for any data characteristics that 
could curtail later statistical analysis. 

Descriptive statistics--including probability plots, box plots of means and 
clustered values, and normality tests--were used to understand the 
characteristic features of available data. These statistical tools indicate how 
the data are distributed (e.g., Gaussian vs. non-Gaussian, variance around 
the mean, etc.). They also show evidence for consistent patterns in the data 
such as skewness and kurtosis (Mathews 2005). Once the descriptive 
statistics were run on each dataset, we determined the most feasible 
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normalization approach. This decision was based on many factors-- 
including its distribution, variance, skewness, and size. This process is 
described in more detail in Chapter 4. 

After normalizing the data, we still had to decide how to compare them. 
This was a complicated process that raised several questions. First, for any 
two soil materials, what threshold in property difference is sufficient for 
defining them as separate materials, such that a sensor can “see” the 
difference between them? Second, what correlations, if any, exist between 
individual soils properties? Finally, is there some weighting factor or 
factors that need to be applied to certain properties to compare them?  

The first question was beyond the scope of this research, and no answer 
was found in the literature. It was not critical to determine the property 
difference threshold before developing the protocol: A threshold value can 
be chosen without altering the protocol itself. However, to fully test the 
new protocol, it is critical that the question be answered because the 
answer will be needed for subsequent subsurface modeling efforts.  

The second question defines a gap in sensor physics research. Most sensor 
systems use varying degrees of electromagnetic (EM) energy to penetrate 
materials and detect foreign objects. Research on the effect of soil properties 
on sensor systems has focused on moisture content (Curtis 2001; Koh and 
Wakeley 2010; van Dam et al. 2005). Few other properties have been 
considered as important, and clear relationships between and among the 
various soil properties have not been defined (Moysey and Knight 2004; 
Rechenmacher and Medina-Cetina 2007; van Dam et al. 2005). During the 
development of this protocol, we were able to determine that certain 
properties are statistically correlated. Often, the observed correlations are 
due to the fact that certain properties are derivatives of others. These 
“collinear” properties were removed from the protocol because they would 
increase the “weight” of a single soil property (i.e., the property from which 
another, collinear property was derived) relative to the others. 

Using empirical substitutions and the information provided by our search 
for answers to the first two questions, we answered the final question. Using 
the generic threshold value and the shortened list of properties developed 
by attempting to answer the first two questions above, we created a simple 
but effective scheme to delineate individual material layers in the shallow 
subsurface. Values of a certain soil property at a certain depth and site are 
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compared to each other based on the threshold. A difference in parameter 
values at two points in space that exceeds the threshold means that they are 
distinct materials; a difference in values less than the threshold means that 
they are the same. 

Once the comparisons of soil parameters were completed for all depth 
ranges at a site, layers of soil materials were defined by majority. For 
example, if the majority of the properties indicated that the first 20 cm of 
soil was a single material, it was then assigned a corresponding material 
identifier (ID). Likewise, if the next depth range (20-40 cm) had some soil 
properties that indicated it was the same material as the first 20 cm, but 
most properties indicated that it was different, the 20- to 40-cm range was 
assigned a different, unique material ID. In a tie, the most heavily 
“weighted” soil properties were used to define the material IDs. In this 
way, through the use of a series of soil properties, individual soil materials 
could be identified at multiple depths and at multiple sites within an AOI. 
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4 Methods 

This chapter discusses the input parameters used in the protocol and the 
reasons they were selected. It also includes descriptive statistics of the 
parameters and plots of the datasets where data from multiple sites were 
treated as a single dataset. 

4.1 Input parameters 

Nine quantitative and two qualitative soil parameters are evaluated in the 
protocol (Figure 1). Some of the parameters—such as USCS soil classifica-
tion, effective saturation, and dry bulk density-- are commonly acquired for 
engineering purposes. Other properties are less commonly measured but 
are considered important when determining how a sensor will respond to a 
given material. Examples include effective saturation, thermal diffusivity, 
and specific conductance (Howington et al. 2011). Engineering and physical 
parameters (Figure 1) are included in the protocol because they are most 
familiar to soil scientists and engineers and because they are part of 
standard practice in soil classification. Hydraulic, electrical, and thermal 
properties are included because of their influence on sensor response.  

 
Figure 1. Schematic diagram of parameters used in the development of the protocol. Red 

boxes indicate commonly measured properties. Blue boxes indicate less commonly measured 
properties that were chosen for their impact on sensor response. Green boxes are geologic 

parameters chosen because of their controlling influence on other parameters. Parameters in 
italics are qualitative. Parameters in plain text are quantitative.  

All of the aforementioned properties are controlled to some degree by 
geologic conditions. Mineralogy has a direct impact on the performance 
and capability of some sensors. Geologic parameters are thus included to 
provide context for the evaluation and analysis of the other parameters 
and to account for the impacts of mineral composition on sensor response. 

Engineering 

Coefficient of 
Uniformity 

Coefficient of 
Curvature 

USCS 
Classification 

Physical 

Dry Bulk 
Density 

Porosity 

Hydraulic 

Effective 
Saturation 

Electrical 

Specific 
Conductance 

Thermal 

Resistivity 

Diffusivity 

Geologic 

Field 
Descriptions 

Mineralogy 



ERDC/GSL TR-12-9 14 

 

4.1.1 Engineering parameters 

The coefficient of uniformity (Cu; Equation 1)and coefficient of curvature 
(Cc; Equation 2)are parameters used in standard engineering practice 
(U.S. Army 1960; ASTM Standard D2487-10, 2010) to classify coarse-
grained soils (more than 50 percent of the material sand size and coarser). 
Each coefficient is calculated from grain-size analyses as part of the USCS 
process. These parameters define the grading of a soil, which gives an 
indication of other engineering properties, such as shear strength.  

 u
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where: 

 D10 = grain size (mm) where 10 percent of grains are smaller than 
the D10;  

 D30 = grain size (mm) where 30 percent of grains are smaller than 
the D30;  

 D60 = grain size (mm) where 60 percent of grains are smaller than 
the D60. 

The coefficient of uniformity is a measure of the range of particle sizes in a 
given sample; the higher the number, the wider the range of particle sizes. 
However, Cu does not reveal what those particle sizes are. Two soils with 
vastly different D60 and D10 values could have the same Cu. On the other 
hand, the coefficient of curvature indicates how evenly distributed particle 
sizes are within the total range of particle sizes present in a sample. That 
is, Cc reveals the difference between a soil that has only boulders in 
uniformly sandy matrix and a soil that has an even distribution of grain 
sizes from boulders to gravel to sand (where Cu may not). When used 
together, the Cc and Cu parameters define the soil gradation and particle 
size uniformity of a given sample. These properties are not known to 
directly affect sensor response, but they have been related to permittivity 
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and conductivity of soils, which can impact sensors (Thevanayagan 1995; 
van Dam et al. 2005).  

In soil engineering, Cu and Cc are considered meaningful only for classifying 
coarse-grained soils, such as clean gravels (USCS classes GW or GP) and 
clean sands (USCS classes SW or SP) that have more than 50 percent of 
material larger than a No. 200 sieve (0.075 mm) and less than five percent 
fines (silt-size and clay-size particles). Atterberg limits are the standard 
method for distinguishing finer-grained soils. However, for this protocol, we 
considered the Cu and Cc of every soil, regardless of USCS class, because 
values for Cu and Cc can indicate soil grading and uniformity regardless of 
soil type. The USCS classification of a soil is largely included in the protocol 
as a qualitative parameter because, other than Cu and Cc, the quantitative 
factors that determine the USCS class of a soil have little or no bearing on 
sensor response. 

4.1.2 Physical parameters  

Dry bulk density and porosity are commonly measured in laboratory studies 
of soils. Dry bulk density is defined as the mass of the mineral aggregates 
divided by the total volume they occupy in the soil. This parameter depends 
greatly on the mineral assemblage of the soil and on changes in the soil such 
as consolidation and cementation. Porosity is a measure of the void space 
that is available to hold water in a soil. Both dry bulk density and porosity 
affect the thermal properties of a soil (Howington et al. 2010; van Dam et al. 
2005). These parameters are inversely related; the more voids in a soil, the 
lower the value of soil density and the higher its porosity (ASTM Standard 
D1895-96, 2010). This relationship is not linear and depends on many other 
factors including grain size, sorting, and particle density. Thus, both 
parameters are included in the protocol. 

4.1.3 Hydraulic parameters 

Effective saturation (Se) is a normalized, dimensionless measure of water 
content (van Genuchten 1980) derived from the water retention curve of a 
soil. The water retention curve represents the relationship between water 
content and water potential (i.e., ability of water to move in porous media) 
of soils and is characteristic of different soil types (Mualem 1976; Equa-
tion 3). The shape of the water retention curve can be defined using 
different models. One of the most commonly used models, the one used 
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here, is the Mualem-van Genuchten model (Fredlund and Xing 1994; 
Mualem 1976; van Genuchten 1980).  
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where: 

 Se = effective saturation; 
 θ = volumetric water content, the fraction of the total volume of 

soil occupied by the water contained in the soil; 
 θr = residual water content, the water content which requires a 

large suction change to remove additional water from the soil.  
 θs = saturated water content, the moisture content when all pore 

space is occupied by water. 

The effective saturation of a soil can also be calculated using its hydraulic 
conductivity – a directly measured soil property. Ideally, only directly 
measured hydraulic parameters would be used in the protocol, and 
hydraulic conductivity would be used instead of effective saturation. 
Unfortunately, estimating the hydraulic conductivity of soil is difficult 
because it is highly variable among in-situ soils, collecting undisturbed 
samples is difficult, and measuring it in a laboratory requires significant 
resources. Because of these difficulties and because the water content of a 
soil is considered critical to sensor response (Chan and Knight 1999; Koh 
and Wakeley 2009; Robinson et al. 2003; Roth et al. 1992), effective 
saturation was used in the protocol. Parameters derived from water 
retention curves are also part of the standard of practice for hydrologic 
characterization of unsaturated soils (ASTM Standard D6836-02, 2008). 

4.1.4 Electrical parameters 

Specific conductance is a measure of the ability of a material to conduct an 
electric current and is the inverse of resistivity. Normally, resistivity is 
measured and then converted into specific conductance. Because many 
sensors use electromagnetic radiation to measure material properties 
(Jensen 2000) and soil conductivity will directly affect signal attenuation, 
specific conductance is important for characterizing sensor response to 
soils. 
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4.1.5 Thermal parameters 

Thermal resistivity is the inverse of thermal conductivity, which is the 
ability of a material to conduct heat. Thermal properties affect how the soil 
responds to heat and are important in the detection of buried objects and 
purposefully disturbed soils (Curtis 2001). Thermal diffusivity is a measure 
of how quickly the temperature of a material adjusts under changing condi-
tions. It is equal to the thermal conductivity (K) divided by the product of its 
density (ρ) and specific heat capacity (C), (Equation 4) also known as its 
volumetric heat capacity. 

 K
a

ρC
  (4) 

where: 

 α = thermal diffusivity; 
 K = thermal conductivity; 
 C = specific heat capacity; 
 ρ = density. 

4.1.6 Geologic parameters 

The geologic parameters used in the protocol include quantitative 
mineralogy and field notes and descriptions. Because of their dependence 
on field conditions and sample quality, these parameters were available for 
only a limited number of sites. Mineralogical data were acquired using a 
PANalytical transmission X-ray diffractometer (XRD) running HighScore 
Plus © software. The software compares the ratio between integrated 
diffraction intensities of the samples to those of a cobalt standard to 
calculate mineral abundances. Mineral composition, particularly the 
abundance of silicates (e.g., quartz and feldspar), clay minerals, and some 
evaporates, such as gypsum, can greatly affect sensor response (Arcone et 
al. 2008; Howari et al. 2007) and were thus an integral part of the protocol 
development.  

Field notes and descriptions were used to evaluate all other soil parameters 
in the protocol with the geologic setting of the sample sites. This component 
of the protocol is essential because of the distinct influence of geologic 
architecture on soil material composition. Field notes and descriptions also 
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served as a developmental segue between the initial steps of the GEOTACS 
Program and the construction of full-scale, realistic 3-D geologic models. 

4.2 Descriptive statistics  

Most statistical tools are designed to find systematic patterns in a popula-
tion or dataset. Their efficacy and use are also often highly dependent on the 
size and distribution of the dataset being studied. Descriptive statistics are 
used to describe the main features of a dataset quantitatively and to 
summarize other important points (e.g., type of distribution, covariance) 
qualitatively. Because descriptive statistics provide the background 
information needed to determine the usefulness of certain statistical tools, 
they must be performed before true analyses can be conducted. Thus, a 
number of methods were used to evaluate the general character of the soil 
properties datasets used in this study. They include probability and box 
plots; skewness, kurtosis, and normality tests; and calculations of mean and 
standard deviation.  

4.2.1 Soil parameter datasets 

The combined dataset used in this study is relatively large, having up to 
243 data values per soil parameter. However, when divided into its 20 AOI 
sources, a single dataset for one soil property in one AOI generally has 
fewer than 15 values. Unfortunately, small datasets can sometimes inhibit 
robust statistical analysis of the data (StatSoft 2010). Moreover, the 
complexity of our data (i.e., 20 AOIs, up to 243 data points per parameter, 
and nine quantitative parameters) complicated the statistical approach 
that had to be used. Our approach had to cull statistically meaningful 
information, including quantitative comparisons between each data 
component, while adjusting for the difficulties of small data groups. 

Most traditional statistical methods are parametric, meaning that they 
assume there is some predictable distribution to the data. More often than 
not, these methods require normally distributed data. It is also assumed 
that the true mean value of the dataset falls within the data range being 
analyzed (StatSoft 2010). These assumptions are reasonable for the largest 
of our datasets, but as detailed later in this chapter, descriptive statistics 
are unreasonable for our smallest dataset. Our data thus posed a unique 
problem; in one form they fit many traditional statistical methods, and in 
others they did not. The following sections describe our investigation of 
the factors influencing this discrepancy. 
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4.2.2 Types of descriptive statistics 

Descriptive statistics include a number of tests, simple calculations, and 
comparisons. They are used to understand the characteristics of the data 
being analyzed and help determine the types of further statistical analyses 
that should be used (Mathews 2005). Information about the distribution, 
central tendency, and dispersion of data can be obtained using descriptive 
statistics. Each set of information is comprised of several factors (e.g., 
mean, median, and quartile distribution). The factors used in this study 
were (1) mean, (2) maximum, (3) minimum, (4) standard deviation, 
(5) normality, (6) skewness, and (7) kurtosis. Besides simple calculations, 
three other tools were used: probability plots, box plots, and histograms.  

Probability plots were made against a normal probability curve to test 
whether or not the datasets are normally distributed1

Table 2. Skewness descriptive terminology (Prothero and Schwab, 1996). 

. Box plots (also known 
as box-and-whisker diagrams) are a graphic way of depicting groups of 
numerical data through their five-number “summary” – the minimum 
observed value, the lower quartiles, the median quartiles, the upper 
quartiles, and the maximum observed value. Box plots are a visual way to 
show the outliers of a population (Massart et al. 2005). Histograms of each 
parameter were plotted to test for skewness and kurtosis. Skewness is a 
measure of asymmetry of the probability distribution of a variable (Davis 
2002). It can be described as strongly positively or strongly negatively 
skewed and other variations, as shown in Table 2. A positive skewness 
means that the distribution has relatively few high values, whereas a nega-
tive skewness means that the distribution has relatively few low values.  

Skewness Value Descriptive term 

> 0.30 Strongly positively skewed 

0.30 to 0.10 Positively skewed 

0.10 to -0.10 Near-symmetrical (unskewed) 

-0.10 to -0.30 Negatively skewed 

< -0.30 Strongly negatively skewed 

Kurtosis measures the ‘peakedness” of the probability distribution of a 
variable (Davis 2002). It can be described as leptokurtic, mesokurtic, or 

                                                                 
1 Normality was also tested using the Anderson-Darling normality test (Mathews 2005). 
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platykurtic (Table 3). A higher kurtosis means more of the variance1 in a 
dataset is the result of infrequent extreme deviations2

Table 3. Kurtosis descriptive terminology(Prothero and Schwab, 1996). 

, as opposed to 
frequent modestly sized deviations.  

Kurtosis Value Descriptive term 
> 1.0 Excessively peaked (leptokurtic) 

1.0 Normally peaked (mesokurtic) 

< 1.0 Deficiently peaked (platykurtic) 

4.2.3 Applications of descriptive statistics 

The descriptive statistics introduced in the previous section were performed 
for eight quantitative parameters using data from 13 sites. Mineralogy was 
not included because of the small size of the dataset. A summary of the soil 
parameters and the corresponding descriptive statistics is shown in Table 4. 
When data for all 13 sites are considered as a single population, the smallest 
number of values in a single data group is 44 (for specific conductance). 
Porosity, dry bulk density, and effective saturation have the maximum 
number, which is 243 (Table 4). Probability plots for each parameter 
(Figure 2) reveal that none of the soil parameters have a normal distribu-
tion. Summaries of each parameter’s descriptive statistics, including 
histogram and box plot, are shown in Figures 3 through 10. These figures 
also reveal non-normal distributions for all parameters.  

Table 4. Summary for descriptive statistics of quantitative parameters. Cu = coefficient of 
uniformity; Cc = coefficient of curvature; Se = effective saturation; φ = porosity; ρ = dry bulk 

density; σ = specific conductance; R = thermal resistivity; α = thermal diffusivity. 

Parameter N Mean 
Standard 
Deviation 

Maximum 
Value 

Minimum 
Value Skewness Kurtosis 

Cu 101 114.07 237.04 2000.00 2.25 5.64 40.88 

Cc 101 4.27 9.92 67.24 0.613 4.56 23.09 

Se 243 0.41 0.31 0.99 -0.03 0.41 -1.13 

φ 243 41.37 8.34 78.67 25.43 1.29 3.49 

ρ 243 1.57 0.21 1.98 0.64 -1.10 3.01 

σ 44 422.23 570.06 2500.00 18.00 2.28 4.89 

R 235 1.42 1.01 4.87 0.30 1.41 1.36 

α 235 0.54 0.41 2.15 0.12 1.92 3.43 

                                                                 
1 Variance denotes how far a set of numbers is spread out from each other (Davis 2002). 
2 Deviation is a measure of the difference between an observed value and the mean (Davis 2002). 
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Figure 2. Probability plots for quantitative parameters. Blue lines represent the 
95 percent confidence interval for a normal distribution. As shown by the data 

values for the parameters (red dots), all parameters have a non-normal distribution. 

 
Figure 3. Summary statistics for the coefficient of uniformity (Cu). The histogram on top shows 

the data being strongly negatively-skewed. Histogram is leptokurtic. The corresponding box 
plot and 95 percent confidence intervals for mean and median are below histogram. 
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Figure 4. Summary statistics for the coefficient of curvature (Cc). The histogram on top shows 

the data being strongly negatively-skewed. Histogram is leptokurtic. The corresponding box 
plot and 95 percent confidence intervals for mean and median are below histogram. 

 
Figure 5. Summary statistics for the effective saturation (Se). The histogram on top shows the 

data being negatively-skewed. Histogram is platykurtic. The corresponding box plot and 95 
percent confidence intervals for mean and median are below histogram. 
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Figure 6. Summary statistics for porosity (φ). The histogram on top shows the data being 
strongly negatively-skewed. Histogram is leptokurtic. The corresponding box plot and 95 

percent confidence intervals for mean and median are below histogram. 

 
Figure 7. Summary statistics dry bulk density (ρ). The histogram on top shows the data being 

strongly positively-skewed. Histogram is leptokurtic. The corresponding box plot and 95 
percent confidence intervals for mean and median are below histogram. 
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Figure 8. Summary statistics for specific conductance (σ). The histogram on top shows the 

data being strongly negatively-skewed. Histogram is leptokurtic. The corresponding box plot 
and 95 percent confidence intervals for mean and median are below histogram. 

 
Figure 9. Summary statistics for thermal resistivity (R). The histogram on top shows the data 

being strongly negatively-skewed. Histogram is leptokurtic. The corresponding box plot and 95 
percent confidence intervals for mean and median are below histogram. 
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Figure 10. Summary statistics for thermal diffusivity (α). The histogram on top shows the data 
being strongly lnegatively-skewed. Histogram is leptokurtic. The corresponding box plot and 

95 percent confidence intervals for mean and median are below histogram. 

Coefficient of uniformity, coefficient of curvature, effective saturation, poro-
sity, density, specific conductance, resistivity, and diffusivity are strongly 
positively skewed (their skewness values are >0.30; Figures 3 – 6 and 
Figures 8 -10). On the other hand, dry bulk density is strongly negatively 
skewed (skewness value <-0.30; Figure 7). All parameters except specific 
conductance follow a leptokurtic pattern (excessively peaked histogram; 
Figures 3 and 4 and Figures 6 - 10), whereas effective saturation follows a 
platykurtic pattern (deficiently peaked histogram; Figure 5). 

4.2.4 Summary 

The available soils data were heavily skewed, exhibited strong kurtosis, 
and were non-normally distributed. Their means fell within the data 
ranges, but they contained a large number of outliers, which contributed 
to the skewness and kurtosis of the datasets. In statistical analysis, non-
normal multivariate data (like those in question) are often analyzed with 
non-parametric methods. This is because they do not conform to the rules 
and assumptions of parametric methods and, as a result, may not yield 
statistically significant results. It would seem, then, that the obvious choice 
for our inductive analysis would be a non-parametric method. 
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Non-parametric methods have the distinct advantage over parametric 
methods in that they rely on fewer assumptions. Thus, in most cases, they 
are more robust. But because they have less power (i.e., lower probability 
that the result will reject the null hypothesis), non-parametric methods 
usually require larger datasets to yield statistically significant results (i.e., 
P-Value less than 0.005). 

The soils-properties dataset available for this study did not satisfy all of 
the assumptions of parametric methods. However, it was a relatively small 
dataset, and research aims required that we compare even smaller groups 
of data within the larger dataset (≤ 15 data points) and evaluate the 
differences among those groups (20 groups). At this scale of comparison, 
non-parametric tests do not provide statistically significant results. Yet our 
challenge was to develop a robust statistics-based method that could be 
applied at this scale. 

4.3 Inductive analysis of soil parameters 

Our primary task was to create a reasonable, reproducible, quantitative 
method to classify soil groups based on a set of soil properties. Because both 
parametric and non-parametric statistical approaches were inadequate, we 
decided to test the efficacy of standardizing the data. We chose the standard 
score, or Z-score, method (Jackson 2009). This method is well known, 
commonly used, and relatively simple to implement. After undergoing the 
Z-score method, soil materials were delineated via qualitative soil para-
meters and a “majority rule” in which the classification of a certain set of 
data points was based on the majority of the parameters. That is, if the 
majority of parameters indicated the series of corresponding data values 
was the same material, then the entire set was classified as that material. 

4.3.1 Normalization-based analysis 

All soil parameters were normalized using the Z-score normalization 
method. This method illustrates the relative difference between a given 
data value in a range and the mean of that range. The Z-score of a value 
(Equation 5) is the number of standard deviations that the value falls 
above or below the mean of all data values in the range. Each data value 
can then be compared to the range of values (and other single values) by 
subtracting the relative magnitudes of the Z-scores for each data value.  
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

  (5) 

where: 

 z = Z-score value; 
 µ = mean of the range; 
 x = data value; 
 σ = standard deviation. 

Table 5 shows the dry bulk density values for different depth intervals and 
the normalized values for a site in Afghanistan. As shown, the Z-score 
method simplifies visual and mathematical comparisons of nearly identical 
data values. Note that the “sets” of data to which the majority rule applies 
are the depth ranges; for every site, the array of soil properties was 
measured at several depth intervals.  

Table 5. Example of using Z-score normalization to reveal 
relationships between data values at depth. Colors 

represent individual material types. Standard values at 
depths 100 to 140 cm (relative to all depths) showed a 
difference of < 0.50; thus, they were grouped into one 

material type based only on the dry-bulk-density parameter. 
Density values were missing in the upper 60 cm at this site. 

Sample ρ ρ std 

 0-20 N/A N/A 

 20-40 N/A N/A 

 40-60 N/A N/A 

 60-80 1.530 1.440 

 80-100 1.515 0.470 

100-120 1.502 - 0.390 

120-140 1.504 - 0.31 

140-160 1.490 - 1.210 

4.3.2 Comparisons of normalized values 

The difference between the Z-score values is used to determine soil 
materials. But in order to assign that material type, some magnitude-of-
difference threshold must be used to compare the data. Because the 
threshold is an increment of Z-score ranges, it is also an increment of the 
soil-parameter ranges. There is a minimum difference in soils’ properties a 
given sensor can detect (i.e., sensor fidelity), and the threshold determines 
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the minimum parameter difference between any two materials. Thus, the 
threshold should be calculated using the fidelity of the sensor. 

The number of soil materials that can be determined by a sensor in a given 
AOI depends on environmental conditions and sensor fidelity. Hence, 
rather than setting the magnitude-of-difference threshold to a value 
calculated for a certain scenario, we chose to use a process of trial and error 
to determine the maximum value that would yield a many-to-one relation-
ship between the number of depth ranges and materials for each site. That 
is, we tested several thresholds until we discovered a value that would 
produce a result that showed the same material at two or more depths at 
every site. The goal was to prove (1) that it is possible to classify soil 
materials at depth in multiple locations and (2) that the adjustment of the 
threshold value will be versatile enough to capture variability in site condi-
tions and sensor fidelities. After several iterations, a value of 0.50 was 
chosen. 

When the absolute difference of Z-scores (Equation 6) for a single 
parameter at any two depth ranges was less than 0.50, those depths were 
grouped as one material. This was done for each soil parameter in the 
protocol. Each parameter’s set of material types was then compared with 
the others. The final set of materials was determined by selecting the 
material type that occurred most frequently across all parameters. 

 Z Z Z 1 2  (6) 

where: 

 Z1 = the Z-score value of depth range 1; 
 Z2 = the Z-score value of depth range 2; 
 |Z| = the absolute difference of the Z-score. 

4.4 Application of the protocol 

To test the protocol, we applied it to a subset of our dataset. Data from four 
AOIs--one in Iraq, one in the U.S., and two in Afghanistan--were analyzed 
using the methods described in previous sections. All data were divided into 
samples, which corresponded to depth intervals. Only the Iraq site had data 
for quantitative mineralogy. The U.S. site had the largest number of 
samples: the Afghanistan site, the fewest. The sites were chosen from the 
larger group because of their data quality and their relevance to GEOTACS 
Program needs. 
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4.4.1 Site B, Iraq 

Twelve samples were available at depth intervals of 10 to 20 cm to a total 
depth of 1.9 m. Data for all the parameters at all depth ranges were 
available, with the exception of mineralogy at the 110-cm depth. Raw 
parameter values (i.e., non-normalized data) are shown in Appendix A. 
Standardized values are shown in Table 6. Final material definition for the 
site is shown in Table 7. According to the USCS soil classification, the upper 
50 cm of the subsurface is silty sand. From 70 to 90 cm in depth, the soil is 
classified as well-graded sand with silt and gravel. Below the 100-cm depth, 
the soil is poorly-graded sand. Using our threshold of 0.50 for the absolute 
difference resulted in 10 material types out of 12 samples (Table 7).  

Of all the quantitative parameters, specific conductance showed the most 
uniformity (using the 0.50 threshold); five adjacent depth ranges (10 to 
90 cm) were classified as the same material. The least uniform property for 
the CBU site was content of the mineral albite, showing similar data values 
and materials at only two depths: 150 and 170 cm. 

4.4.2 Site CUL2, U.S. 

Twenty-one samples were available at depth intervals of 10 cm to a total 
depth of 2 m. Mineralogy and specific conductance data were not available 
for this site. USCS, Cu, and Cc data were available for alternating depth  

Table 6. Standardized values for CBU site. Colors by column represent groups where there is an absolute 
Z-score difference of less than 0.50. Sample= sampling ID and depth in cm; Std=standardized value; USCS= 

Unified Soil Classification System; Cu=coefficient of uniformity; Cc=coefficient of curvature; Se=effective 
saturation; φ=porosity; ρ=dry bulk density; σ=specific conductance; R=thermal resistivity; α=thermal diffusivity; 

Qtz=quartz; Alb=albite; Ksp=Potassium-rich feldspars; Clay=total clay mineral content; Carb=carbonate.  

 
 

Sample ASTM Classification std Cu std Cc φ std ρ std σ std R std α std Qtz std Alb std Ksp stdClay stdCarb std
site B 0-1,2 Si l ty sand (SM) -1.21 -1.178 0.21 -0.02 0.023 2.292 -1.5 -0.268 -0.373 -1.815 2.233 0.914

site B -10-1,2 Si l ty sand (SM) 0.255 1.273 0.51 -0.407 -0.613 0.867 -0.86 -0.071 -1.684 -1.054 -1.318 1.764
site B-31-1,2 Si l ty sand (SM) 1.092 1.429 0.95 -0.857 -0.431 -0.747 0.49 -1.447 1.267 -1.054 -0.134 1.480
site B-50-1,3 Si l ty sand (SM) 1.878 0.136 1.3 -1.384 -0.841 -1.619 1.44 -0.071 -0.700 1.227 0.457 0.064
site B-70-1,3 Wel l -graded sand with s i l t and gravel  (SW-SM)g 1.171 0.459 -0.09 -0.169 -0.804 -0.355 0.71 -0.563 0.119 -0.104 0.161 0.348
site B-90-1,2 Wel l -graded sand with s i l t and gravel  (SW-SM)g 0.512 1.725 1.49 -1.491 -0.841 0.237 0.75 0.125 -0.045 -0.104 0.901 -0.502

site B-100-2,3 Poorly-graded sand (SP) -0.187 -1.042 -0.96 0.898 -0.158 -0.019 -0.43 -0.366 1.594 -0.104 0.309 -0.927
site B-110-1,2 Poorly-graded sand (SP) -0.478 -0.633 -1 0.939 -0.613 -0.098 -0.36 N/A N/A N/A N/A N/A
site B-130-2,3 Poorly-graded sand (SP) -0.911 -0.74 -1.31 1.436 -0.067 0.866 -1.22 1.304 -0.700 0.847 -0.134 -0.785
site B-150-1,3 Poorly-graded sand (SP) -0.725 -0.495 -1.03 0.966 2.297 -0.132 -0.71 1.893 -0.373 0.086 -1.022 -0.785
site B-170-2,3 Poorly-graded sand (SP) -0.187 -0.59 0.75 -0.745 0.478 -0.552 1.51 0.714 -0.373 0.847 -0.726 -0.502
site B-190-1,2 Poorly-graded sand (SP) -1.21 -0.344 -0.81 0.834 1.57 -0.741 0.17 -1.250 1.267 1.227 -0.726 -1.068



ERDC/GSL TR-12-9 30 

 

Table 7. Final definition of material 
types for the Iraq site. 

Depth (cm) Material Type 

0 1 

10 2 

30 3 

50 4 

70 5 

90 6 

100 7 

110 7 

130 8 

150 8 

170 9 

190 10 

intervals, as shown in Table 8. This site had the highest sampling frequency 
of any used in this study. Raw parameter values (i.e., non-normalized data) 
are shown in Appendix A. Standardized values are shown in Table 8. Final 
material definition is shown in Table 9.  

Table 8. Standardized values for U.S. site. Colors by column represent groups where there is an 
absolute Z-score difference of less than 0.50. Sample= sampling ID and depth in cm; 

Std=standardized value; USCS= Unified Soil Classification System; Cu=coefficient of uniformity; 
Cc=coefficient of curvature; Se=effective saturation; φ=porosity; ρ=dry bulk density; R=thermal 

resistivity; α=thermal diffusivity. 
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Table 9. Final definition of material 
types for the U.S. site. 

Depth (cm) Material Type 
0 1 
10 2 
20 2 
30 3 
40 3 
50 4 
60 4 
70 5 
80 6 
90 7 
100 7 
110 8 
120 8 
130 9 
140 9 
150 10 
160 10 
170 10 
180 10 
190 10 
200 10 

USCS soil classification for this site identifies silty sand at the surface and 
at the 30- and 90-cm depths. Sandy silty clay is identified only at 50-cm 
depth. At 70 cm, sandy lean clay is present. Silt occurs at 130 and 190 cm. 
Lean clay occurs at 110-, 150-, and 170-cm depths. The protocol identified 
10 material types at the site (Table 9). The coefficient of uniformity had 
the most similar values of all parameters, whereas thermal resistivity had 
the least. 

4.4.3 Site GA1 (Afghanistan) 

Eight samples were available at depth intervals of 20 cm to a total depth of 
1.4 m. Mineralogy and specific conductance data were not available for this 
site. Effective saturation, porosity, density, thermal resistivity, and thermal 
diffusivity data were not available from 0- to 40-cm depth. This site and 
GQ1 had the lowest sampling frequency of any used in this study. Raw 
parameter values (i.e., non-normalized data) are shown in Appendix A. 
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Standardized values are shown in Table 10. Final material definition is 
shown in Table 11. 

USCS soil classification for this site identifies silty gravel with sand at the 
surface and 20-cm depth. Silty sand with gravel is identified at 40-cm 
depth. Silty sand is identified at 60-cm depth. Well-graded sand is identified 
at 80-cm depth. Poorly-graded sand with silt is identified from 100 to 
140 cm. The protocol identified seven material types at the site (Table 11). 
The coefficient of uniformity had the most similar values of all parameters. 
Standard scores for the coefficient of curvature and porosity yielded 
identical material distributions. 

Table 10. Standardized values for GA1 site. Colors by column represent groups where there is 
an absolute Z-score difference of less than 0.50. Sample= sampling ID and depth in cm; 

Std=standardized value; USCS= Unified Soil Classification System; Cu=coefficient of 
uniformity; Cc=coefficient of curvature; Se=effective saturation; φ=porosity; ρ=dry bulk 

density; R=thermal resistivity; α=thermal diffusivity. 

 

Table 11. Final definition of material 
types for site GA1. 

Depth (cm) Material Type 

0 1 

20 2 

40 3 

60 4 

80 5 

100 6 

120 6 

140 7 
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4.4.4 Site GQ1 (Afghanistan) 

Eight samples were available at depth intervals of 20 cm to a total depth of 
1.4 m. Mineralogy and specific conductance data were not available for 
this site. This site and GA1 had the lowest sampling frequency of any used 
in this study. Raw parameter values (i.e., non-normalized data) are shown 
in Appendix A. Standardized values are shown in Table 12. Final material 
definition is shown in Table 13.  

Table 12. Standardized values for GQ1 site. Colors by column represent groups where there is 
an absolute Z-score difference of less than 0.50. Sample= sampling ID and depth in cm; 

Std=standardized value; USCS= Unified Soil Classification System; Cu=coefficient of 
uniformity; Cc=coefficient of curvature; Se=effective saturation; φ=porosity; ρ=dry bulk 

density; R=thermal resistivity; α=thermal diffusivity. 

 
 

Table 13. Final definition of material 
types for site GQ1. 

Depth (cm) Material Type 

0 1 

20 2 

40 2 

60 3 

80 4 

100 4 

120 5 

140 5 

USCS soil classification for this site identifies sandy silt at the surface. Silt 
with sand is identified at 20-cm depth. Silt is present from 40- to 140-cm 
depth. The protocol identified six material types at the site (Table 13). 
Coefficient of curvature and the effective saturation had the most similar 
values of all parameters. Coefficient of uniformity, porosity, and density 
also showed a comparable distribution.  
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5 Discussion 

Previous methods used to define soil materials for 3-D models were 
founded on expert opinion with minimal statistical analyses of data 
(Wakeley et al. 2011). They relied primarily on qualitative judgments about 
geologic architecture: quantitative analyses of measured soil properties 
were used on a limited basis. The methods described in this report reverse 
that order of operations. That is, quantitative tools were developed to 
delineate soil materials based on measured properties data, and qualitative 
judgments about geologic conditions were used only to refine the material 
definitions. Both methods, however, recognize the importance of qualitative 
geologic judgments when defining soil materials for use in 3-D models for 
sensor response.  

5.1 Quantitative versus qualitative analysis 

Geologic environments of depositions were not included in the early 
method or in the protocol detailed here. Ideally, a depositional setting 
should be established for each site and soil material such that a 
relationship could be established between measured soil properties and 
site geomorphology. Unfortunately, multiple depositional settings can 
produce a single type of soil material. Likewise, a single geologic setting 
can produce multiple types of soil materials. Thus, direct correlations 
between geologic architecture and depositional environments are 
ambiguous because of their qualitative, interpretive nature.  

Quantitative methods, on the other hand, may be able to distinguish among 
materials that appear to share a common geologic origin. While under-
standing the geologic setting of an AOI is critical for distributing materials 
in a 3-D model, that understanding is less critical for defining the soil 
materials themselves. When defining soil materials for sensor-response 
models, it is most important to use quantitative tools that compare sets of 
measured soil properties. Yet the relationships between soil properties can 
make the development of a quantitative process very complex. 

Many soil properties have known relationships. For example, mineralogy 
can influence density, thermal resistivity, and specific conductance. These 
relationships can greatly affect sensor response (Koh and Wakeley 2010). 
They can also influence the results of statistical analyses if two or more 
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properties have measured values that are some function of the other. 
Consider a clean, poorly-graded pure-quartz sand1

5.2 Limits and advantages of the new protocol 

 being analyzed using the 
method we developed here. Suppose that with a one percent volume 
increase of pure-quartz mineralogy, the specific conductance of the soil 
decreases by 1.5 percent, all other properties being equal. Without capturing 
this direct relationship in the quantitative analysis methods used to define 
soil materials for sensor simulations (or any other purpose), statistical 
methods may yield results that have reduced reliability. Nonetheless, as the 
applications and implementations of sensor systems proliferate, it is 
increasingly important to use quantitative analysis methods to classify soil 
materials. 

The Z-score method introduced in this report is a new, unique application 
of statistical methods in support of 3-D subsurface modeling for sensor 
simulations. It allows the user to compare soil data that otherwise would 
be too similar to visually or qualitatively delineate soil materials (Table 5). 
The protocol also allows users to tailor each parameter to their research 
needs, making it applicable to numerous applications in subsurface 
modeling, sensor performance, and soil science. It provides numerous 
benefits over earlier methods used in the GEOTACS Program, including 
improved accuracy, more reproducible results, and increased reliability. 
Moreover, it removes some of the ambiguity associated with the expert 
judgment required to implement classification results in modeling efforts, 
which, in turn, makes the new protocol more consistent between geologic 
environments and more resistive to human error. 

However, this version of the protocol has limitations, most of which hinge 
on a few factors. First, many soil properties are directly or indirectly 
correlated to one another (see the example in Section 5.1). In statistical 
terms, this problem is known as “co-variance.” Co-variance can affect the 
weighting of the various parameters being analyzed and thereby alter the 
results. With respect to this protocol, co-variance may limit the user’s 
ability to determine the materials that a sensor will “see.” This is because 
the sensor is reacting to true ground conditions – all properties together, 
in-situ. The user of the protocol, on the other hand, is attempting to 
reconstruct what the sensor will “see” from non-in-situ data by making 
assumptions about the relationships between each measured soil property. 
                                                                 
1 This type of material is extremely rare in nature and is used for explanatory purposes only. 
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To define each material as it would be “seen” by the sensor, every 
correlation among all soil properties that impact sensor response would 
have to be characterized and documented carefully. This is a costly and 
time-consuming proposition for any project, and as such was an 
unrealistic goal for the GEOTACS Program. Thus, this limitation of such 
characterization was considered an acceptable margin of error in an effort 
to improve the state of practice for sensor simulations. 

Second, the Z-score compares the deviation of a particular depth interval 
with the mean of all data points in the depth range. It does not compare the 
absolute deviation of a given interval from the data values measured in the 
intervals above and below it. That is, the protocol carries the assumption 
that the deviation of a single data point from the dataset’s mean is more 
important than the deviation of two adjacent data points from each other. 
This assumption may not always hold true. Yet finding statistical methods 
to provide a better comparison between individual samples is difficult due 
to the nature of the data themselves: the datasets are very small, and the 
distribution is controlled by many geologic factors that cannot be “penciled 
in.” Moreover, most of the traditional statistical methods are not meant to 
make comparisons between individual values. Most are intended to discover 
and analyze patterns in large datasets and are based on comparisons 
between a single data point and characteristics of the group (e.g., mean, 
median, and distribution).  

Another limitation revealed during the application of this protocol is that 
the number of materials defined is generally proportional to the number of 
samples in the data. As discussed in Section 4.3.2, it is possible that 
individual materials defined by this method may not yield different sensor 
responses. For this reason, it is critical to determine the limitations of the 
sensors that are being tested using the 3-D models produced via this 
protocol. In other words, better-defined relationships between soil 
properties and sensor response, including specific information about 
sensor fidelity, would allow users to set the protocol threshold to a value 
that is realistic and effective for a given sensor. Knowledge of sensor 
fidelity may allow for very fine adjustment of the protocol, such that the 
protocol may be able to delineate soil variability at many different scales. 
Accurate “sub-materials” may be definable with a very small threshold 
value. Likewise, larger “super-materials” may be defined to characterize 
macro-scale geologic features. 
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6 Conclusion 

The GEOTACS Subsurface Realizations team successfully developed a 
prototype quantitative method to define soil materials for 3-D modeling of 
near-surface geology. This method was developed as one component of 3-D 
geo-environmental modeling used in force protection and is an integral 
component of current and future modeling efforts for sensor response 
simulation. Although the protocol is limited by unavoidable soil-modeling 
complexities, it offers a number of promising developments over previous 
methods and is adaptable to ever-changing tactical objectives. The develop-
ment process also revealed important complexities about classifying soil 
materials by using properties known to affect sensor response.  

6.1 Adaptable improvements on previous methods 

To build a geological framework for near-surface models, it is essential to 
define material types according to the intent of the model. The system 
presented here uses statistical methods to define material types by using 
properties affecting sensor response. Earlier methods hinged on qualitative 
interpretations that met the need of the time but might not have been 
reliably repeatable. The magnitude of the threshold could be adjusted based 
on the sensor system being modeled, and in theory an array of threshold 
values could be used as needed for each parameter being evaluated. 

In this study, threshold values were defined by trial and error. Experiments 
with several threshold values revealed that the approach could be tailored to 
the scale of the model. For a given sensor, the threshold value may be 
relatively large, meaning the sensor is capable of seeing only large-scale 
differences in a property rather than small differences in different soils. On 
the other hand, smaller threshold values can reveal variability within one 
material type. This ability to scale the variability will be critical for 
advancing the method to serve multiple geo-environments and sensor 
modalities.  

Early methods did not have the advantage of robust and repeatable 
quantitative tools to perform material classification analysis. Instead, they 
relied heavily on expert judgments and field observations (i.e., qualitative 
data). Because sensors measure the near surface using a variety of 
instrumentation and the sensor-response data are therefore quantitative 
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in nature, quantitative tools are bound to more closely reflect the nuances 
of sensor response models.  

The list of parameters used in the prototype method was derived from the 
results of numerous studies regarding soil-sensor interaction. It is 
challenging to classify soils or define soil material types on the basis of 
properties that impact signal attenuation when:  

1. Controllers of signal attenuation are not uniquely defined;  
2. Relationships among properties are not quantified; and 
3. Different sensors are affected by different properties.  

Thus, there is no generic all-purpose property and no generic sensor. In 
light of the deficiencies in the state-of-knowledge about soil-sensor 
interaction, the protocol presented here is a simple solution that is in its 
infancy. Improvements in differentiating among soil materials will 
therefore depend on future research to determine how the various 
properties that impact sensor response interact with each other and to 
what extent those interactions affect sensor signals. 

An unintended benefit of this research was renewed interest in developing 
advanced capabilities for TPROGS for GMS. Currently, TPROGS can 
handle only five material types. While it is important to avoid developing 
models that are more complex than necessary, the five-material restriction 
reduces the versatility of a software package that otherwise meets the 
immediate need. Moreover, the variability of scales and sensor fidelities 
projected to be needed for GEOTACS simulations will likely require a large 
number of soil materials to be modeled at a sub-centimeter scale. 

6.2 Quantitative soil parameter comparisons 

The protocol uses the standard, or Z-score, method to compare soil 
parameter data. Most such parametric statistical techniques require the 
assumption that the data are normally distributed (i.e., Gaussian). Non-
parametric statistics do not carry the same assumption of normality, but 
they often have a bottom limit to the number of data points required to yield 
statistically significant results (i.e., confidence interval greater than 95 
percent). In this case, the total dataset (consisting of one soil parameter for 
multiple sites and multiple depths) was large, the sub-datasets (consisting 
of single-parameter and site groups) were small, and most of the data and 
sub-datasets were not normally distributed. So, while the Z-score method 
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employed in the protocol is a valid first-order approach to the problem, it 
also suggests that additional work is required to identify the most realistic 
and effective statistical method. 

The quantitative component of the protocol also revealed some important 
things about the soil parameters used. First, certain aspects of the USCS 
classification system were found to be useful outside civil engineering 
applications. The coefficient of uniformity (Cu), for example, was used in a 
way other than originally intended. By standard USCS methods, soils are 
considered to be poorly graded if their Cu is greater than six and their Cc is 
greater than three. These values are realistic for sands and gravels that 
were engineered for use in roadway construction. Soils of natural geologic 
settings are not processed and thus are likely to be poorly graded. Large 
values of Cu for natural soils indicate extremely wide ranges of particle 
sizes in a given soil. Since particle size can impact sensor response, Cu can 
be used as a quantitative parameter to distinguish natural material types 
for sensor-response simulations. The same is also true for the coefficient of 
curvature, Cc. 

Second, the results of our protocol tests revealed some new information 
about correlations between various soil properties. Dry bulk density (ρ) 
and porosity (φ), for example, consistently showed similar materials 
definitions according to their Z-scores. This was an expected (albeit not 
guaranteed) relationship. On the other hand, the materials definition from 
specific conductance (σ) and effective saturation (Se) were not as similar 
as expected. These results are preliminary but can be used in future work 
to develop and support the examination of cross-correlations between soil 
properties. 

6.3 Future research 

The primary goal for future research will be to design and implement a 
statistical method that increases the number of soil-property correlations 
that are directly accounted for during analyses. We also intend to explore 
the application of non-parametric statistics and high-performance 
computing. Respectively, these tools may provide more robust analyses by 
eliminating assumptions of data normality and providing the computing 
power for the large numbers of calculations associated with “brute force” 
statistics. 
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Appendix A: Raw Values of Soil Parameters at 
Each Protocol Test Site 
Site B 

 
 

 
  

Sample ASTM Classification Cu std Cu Cc std Cc φ φ std ρ ρ std σ σ std R R std α α std
site B 0-1,2 Silty sand (SM) 5.556 -1.210 0.747 -1.178 37.544 0.214 1.655 -0.020 190.000 0.023 3.342 2.292 0.199 -1.500
site B -10-1,2 Silty sand (SM) 14.444 0.255 1.617 1.273 38.321 0.505 1.628 -0.407 120.000 -0.613 2.648 0.867 0.247 -0.857
site B-31-1,2 Silty sand (SM) 19.524 1.092 1.672 1.429 39.500 0.947 1.597 -0.857 140.000 -0.431 1.861 -0.747 0.349 0.494
site B-50-1,3 Silty sand (SM) 24.286 1.878 1.213 0.136 40.428 1.295 1.561 -1.384 95.000 -0.841 1.436 -1.619 0.421 1.441
site B-70-1,3 Well-graded sand with silt and gravel (SW-SM)g 20.000 1.171 1.328 0.459 36.739 -0.089 1.645 -0.169 99.000 -0.804 2.052 -0.355 0.366 0.713
site B-90-1,2 Well-graded sand with silt and gravel (SW-SM)g 16.000 0.512 1.778 1.725 40.936 1.486 1.553 -1.491 95.000 -0.841 2.340 0.237 0.368 0.746
site B-100-2,3 Poorly-graded sand (SP) 11.765 -0.187 0.795 -1.042 34.407 -0.963 1.719 0.898 170.000 -0.158 2.216 -0.019 0.279 -0.433
site B-110-1,2 Poorly-graded sand (SP) 10.000 -0.478 0.940 -0.633 34.297 -1.004 1.721 0.939 120.000 -0.613 2.177 -0.098 0.285 -0.360
site B-130-2,3 Poorly-graded sand (SP) 7.368 -0.911 0.903 -0.740 33.496 -1.305 1.756 1.436 180.000 -0.067 2.647 0.866 0.220 -1.222
site B-150-1,3 Poorly-graded sand (SP) 8.500 -0.725 0.989 -0.495 34.227 -1.030 1.723 0.966 440.000 2.297 2.161 -0.132 0.259 -0.705
site B-170-2,3 Poorly-graded sand (SP) 11.765 -0.187 0.956 -0.590 38.975 0.750 1.605 -0.745 240.000 0.478 1.956 -0.552 0.426 1.514
site B-190-1,2 Poorly-graded sand (SP) 5.556 -1.210 1.043 -0.344 34.826 -0.806 1.714 0.834 360.000 1.570 1.864 -0.741 0.325 0.169

Sample Qtz Qtz std Alb Alb std Ksp Ksp std Clay Clay std Carb Carb std
site B 0-1,2 59.000 -0.268 14.000 -0.373 6.000 -1.815 14.000 2.233 8.000 0.914
site B -10-1,2 60.000 -0.071 10.000 -1.684 8.000 -1.054 2.000 -1.318 11.000 1.764
site B-31-1,2 53.000 -1.447 19.000 1.267 8.000 -1.054 6.000 -0.134 10.000 1.480
site B-50-1,3 60.000 -0.071 13.000 -0.700 14.000 1.227 8.000 0.457 5.000 0.064
site B-70-1,3 57.500 -0.563 15.500 0.119 10.500 -0.104 7.000 0.161 6.000 0.348
site B-90-1,2 61.000 0.125 15.000 -0.045 10.500 -0.104 9.500 0.901 3.000 -0.502
site B-100-2,3 58.500 -0.366 20.000 1.594 10.500 -0.104 7.500 0.309 1.500 -0.927
site B-110-1,2 N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A
site B-130-2,3 67.000 1.304 13.000 -0.700 13.000 0.847 6.000 -0.134 2.000 -0.785
site B-150-1,3 70.000 1.893 14.000 -0.373 11.000 0.086 3.000 -1.022 2.000 -0.785
site B-170-2,3 64.000 0.714 14.000 -0.373 13.000 0.847 4.000 -0.726 3.000 -0.502
site B-190-1,2 54.000 -1.250 19.000 1.267 14.000 1.227 4.000 -0.726 1.000 -1.068

CBU data (cont.)
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